Higher cardinal invariants

Dilip Raghavan (Joint work with Saharon Shelah)

National University of Singapore

Workshop on Set theory of the Reals, Casa Matemática Oaxaca, Oaxaca, México. August 6, 2019.

・ 同 ト ・ ヨ ト ・ ヨ ト

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Bibliography

Definition

Let $\kappa \geq \omega$ be regular. Let \mathcal{U} be an ultrafilter on κ . We say that:

• \mathcal{U} is **uniform** if every element of \mathcal{U} has cardinality κ ;

• $F \subseteq \mathcal{P}(\kappa)$ is a base for \mathcal{U} if $\mathcal{U} = \{B \subseteq \kappa : \exists A \in F [A \subseteq B]\}.$

2

< 日 > < 回 > < 回 > < 回 > < 回 > <

Definition

 $\mathfrak{u}(\kappa) = \min\{|F| : F \text{ is a base for a uniform ultrafilter on } \kappa\}.$

- Clearly r(κ) ≤ u(κ) (F ⊆ [κ]^κ and F needs to decide every subset of κ to generate a uniform ultrafilter).
- $\mathfrak{u}(\omega)$ and $\mathfrak{s}(\omega)$ are independent.
- However for $\kappa > \omega$, $\mathfrak{s}(\kappa) \le \mathfrak{b}(\kappa) \le \mathfrak{r}(\kappa)$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Definition

 $\mathfrak{u}(\kappa) = \min\{|F| : F \text{ is a base for a uniform ultrafilter on } \kappa\}.$

- Clearly r(κ) ≤ u(κ) (F ⊆ [κ]^κ and F needs to decide every subset of κ to generate a uniform ultrafilter).
- $\mathfrak{u}(\omega)$ and $\mathfrak{s}(\omega)$ are independent.
- However for $\kappa > \omega$, $\mathfrak{s}(\kappa) \leq \mathfrak{b}(\kappa) \leq \mathfrak{r}(\kappa)$.

Question (Kunen)

Is it consistent that $\mathfrak{u}(\omega_1) < 2^{\aleph_1}$?

Theorem (Carlson, 1980s unpublished)

If κ is supercompact, then $\mathfrak{u}(\kappa) < 2^{\kappa}$ is consistent.

э

・ロ・ ・ 四・ ・ 回・ ・ 回・

- How about getting $\mathfrak{u}(\kappa) < 2^{\kappa}$ at smaller more accessible cardinals?
- R. + Shelah showed recently that it is possible to do this for many accessible cardinals, assuming large cardinals.

э

< 日 > < 回 > < 回 > < 回 > < 回 > <

- How about getting $\mathfrak{u}(\kappa) < 2^{\kappa}$ at smaller more accessible cardinals?
- R. + Shelah showed recently that it is possible to do this for many accessible cardinals, assuming large cardinals.

Theorem (R. + Shelah [2], 2018)

It is consistent relative to a measurable cardinal that there is a uniform ultrafilter on the reals which is generated by fewer than $2^{2^{\aleph_0}}$ many sets.

Theorem (R. + Shelah [2], 2018)

Assume that there is a supercompact cardinal. Then there is a forcing extension in which $u(\aleph_{\omega+1}) < 2^{\aleph_{\omega+1}}$.

• The crucial ingredient used in these proofs is the notion of an indecomposable filter.

Definition

Let κ and λ be infinite cardinals. A filter \mathcal{F} on λ is said to be κ -indecomposable if whenever $\langle Y_{\xi} : \xi < \kappa \rangle$ is a partition of λ – i.e. $\lambda = \bigcup_{\xi < \kappa} Y_{\xi}$ and $\forall \zeta < \xi < \kappa [Y_{\zeta} \cap Y_{\xi} = 0]$ – then there exists $T \subseteq \kappa$ such that $|T| < \kappa$ and $\bigcup_{\xi \in T} Y_{\xi} \in \mathcal{F}$.

- Note that \aleph_0 -indecomposable is the same as countably complete.
- If *F* is a λ-complete ultrafilter on λ, then it is κ-indecomposable for any ℵ₀ ≤ κ < λ.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ be a forcing notion. We say that $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ has a $(\lambda, \kappa, \mu, D)$ -filtration if there exists a sequence $\langle \mathbb{P}_{\alpha} : \alpha < \mu \rangle$ satisfying the following:

- λ, κ , and μ are infinite cardinals satisfying $\lambda < cf(\mu) < \kappa < \mu$;
- 2 μ is a strong limit cardinal and $\lambda^{<\lambda} = \lambda$;
- **③** \mathcal{D} is a uniform $cf(\mu)$ -indecomposable filter on κ ;
- \mathbb{P} is λ^+ -c.c. and $\forall p \in \mathbb{P} \exists \alpha < \mu \ [p \in \mathbb{P}_{\alpha}];$
- **5** for each $\alpha < \mu$, $\mathbb{P}_{\alpha} \subseteq_{c} \mathbb{P}$, and $\forall \xi < \alpha [\mathbb{P}_{\xi} \subseteq \mathbb{P}_{\alpha}]$;
- for each $\alpha < \mu$, $|\mathbb{P}_{\alpha}| < \mu$.
 - Observe that there is no connection between ℙ and the filter D –
 i.e. we only need the existence of some uniform
 cf(μ)-indecomposable filter on κ.

Theorem

Let $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ be a forcing notion. Assume that λ, κ, μ , and \mathcal{D} are so that $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ has a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration. Assume moreover that $\operatorname{cf}(\kappa) = \kappa$. Then \mathbb{P} forces that every uniform ultrafilter on κ that extends \mathcal{D} is generated by a set of size at most μ . In particular, \mathbb{P} forces that $\mathfrak{u}(\kappa) \leq \mu$.

Several posets of the form Fn(I, J, χ) as well as products of such posets have a (λ, κ, μ, D)-filtration.

Lemma

Suppose that λ, κ, μ , and \mathcal{D} satisfy the first three conditions in the definition of a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration. Then $\operatorname{Fn}(\mu \times \lambda, 2, \lambda)$ has a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration.

 The following theorem is needed for the case when κ = ℵ_{ω+1}, and it uses a supercompact cardinal.

Theorem (Ben-David and Magidor)

Assume that there is a supercompact cardinal. There is a forcing extension in which GCH holds and there is a uniform ultrafilter on $\aleph_{\omega+1}$ which is \aleph_n -indecomposable for all $0 < n < \omega$.

イロト イ理ト イヨト イヨト

Theorem

Assume that there is a supercompact cardinal. Then there is a forcing extension in which $u(\aleph_{\omega+1}) < 2^{\aleph_{\omega+1}}$.

Proof.

By the result of Ben-David and Magidor we can pass to a forcing extension V' in which GCH holds and there exists a uniform ultrafilter \mathcal{D} on $\aleph_{\omega+1}$ which is \aleph_n -indecomposable for all $0 < n < \omega$. Working in **V**', put $\kappa = \aleph_{\omega+1}$ and choose $\lambda = \aleph_0$ and $\mu = \aleph_{\omega_1}$. Then since GCH holds in V', (1)–(3) of the definition of a $(\lambda, \kappa, \mu, D)$ -filtration are satisfied. So $\mathbb{P} = \operatorname{Fn}(\mu \times \lambda, 2, \lambda)$ has a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration. Let *G* be $(\mathbf{V}', \mathbb{P})$ -generic. By standard arguments, $2^{\lambda} = \mu$ in V' [G]. By the main theorem, $\mathfrak{u}(\kappa) \leq \mu$ holds in $\mathbf{V}'[G]$. By the fact the all cofinalities and cardinals are preserved between V' and V' [G], $\aleph_{\omega+1} = \kappa$, $\mathfrak{u}(\kappa) \leq \mu$, and $2^{\kappa} = (2^{\lambda})^{\kappa} = \mu^{\kappa} > \mu^{\operatorname{cf}(\mu)} > \mu \text{ in } \mathbf{V}'[G].$

2^{ℵ_{ω+1}} > ℵ_{ω₁} holds in this model and we do not know how to get a smaller gap.

Question

Is it possible to produce models where $\mathfrak{u}(\aleph_{\omega+1}) = \aleph_{\omega+2} < \aleph_{\omega+3} = 2^{\aleph_{\omega+1}}$?

크

・ロト ・四ト ・ヨト ・ヨト

2^{ℵ_{ω+1}} > ℵ_{ω₁} holds in this model and we do not know how to get a smaller gap.

Question

Is it possible to produce models where $\mathfrak{u}(\aleph_{\omega+1}) = \aleph_{\omega+2} < \aleph_{\omega+3} = 2^{\aleph_{\omega+1}}$?

- Another feature of this model is that $2^{\aleph_0} = \aleph_{\omega_1}$.
- Actually we did not have to choose $\lambda = \aleph_0$. We could have chosen $\lambda = \aleph_n$, for some $n < \omega$ and $\mu = \aleph_{(\omega_{n+1})}$.
- Then we would have GCH below \aleph_n , $2^{\aleph_n} = \aleph_{(\omega_{n+1})}$ and $2^{\aleph_{\omega+1}} = \aleph_{(\omega_{n+1}+1)}$.

Question

Is it consistent to have \aleph_{ω} be a strong limit and $\mathfrak{u}(\aleph_{\omega+1}) < 2^{\aleph_{\omega+1}}$?

• For ultrafilters on the reals we need one more fact.

Lemma

Let $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ and $\langle \mathbb{R}, \leq_{\mathbb{R}}, 1_{\mathbb{R}} \rangle$ be forcing notions. Assume that λ, κ, μ , and \mathcal{D} are so that $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ has a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration. If $|\mathbb{R}| < \mu$ and

 $\Vdash_{\mathbb{P}}$ " $\check{\mathbb{R}}$ is $\check{\lambda}^+$ -c.c.",

then $\mathbb{P} \times \mathbb{R}$ also has a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration.

イロト イ理ト イヨト イヨト

• For ultrafilters on the reals we need one more fact.

Lemma

Let $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ and $\langle \mathbb{R}, \leq_{\mathbb{R}}, 1_{\mathbb{R}} \rangle$ be forcing notions. Assume that λ, κ, μ , and \mathcal{D} are so that $\langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle$ has a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration. If $|\mathbb{R}| < \mu$ and

 $\Vdash_{\mathbb{P}}$ " $\check{\mathbb{R}}$ is $\check{\lambda}^+$ -c.c.",

then $\mathbb{P} \times \mathbb{R}$ also has a $(\lambda, \kappa, \mu, \mathcal{D})$ -filtration.

• Starting with a measurable cardinal κ , and applying the above lemma (to a product of the form $\operatorname{Fn}(\mu \times \lambda, 2, \lambda) \times \operatorname{Fn}(\kappa \times \aleph_0, 2, \aleph_0)$) together with the main theorem, we get a model where $\mathfrak{u}(2^{\aleph_0}) < 2^{2^{\aleph_0}}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- In the resulting model $2^{\aleph_0} = \kappa$ and it is weakly inaccessible.
- And $2^{\kappa} > \kappa^{+\aleph_2}$. This is the smallest gap we are able to get.

Question

Is it consistent to have $2^{\aleph_0} = \kappa$ regular and $\mathfrak{u}(2^{\aleph_0}) = \kappa^+ < \kappa^{++} = 2^{2^{\aleph_0}}$?

(日) (圖) (E) (E) (E)

- In the resulting model $2^{\aleph_0} = \kappa$ and it is weakly inaccessible.
- And $2^{\kappa} > \kappa^{+\aleph_2}$. This is the smallest gap we are able to get.

Question

Is it consistent to have $2^{\aleph_0} = \kappa$ regular and $\mathfrak{u}(2^{\aleph_0}) = \kappa^+ < \kappa^{++} = 2^{2^{\aleph_0}}$?

• It is also possible to combine the two theorems to get the following.

Corollary

Assume that there is a supercompact cardinal. Then there is a forcing extension in which $2^{\aleph_0} = \aleph_{\omega+1}$ and $\mathfrak{u}(\aleph_{\omega+1}) < 2^{\aleph_{\omega+1}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Definition

Let $\kappa \geq \omega$ be a regular cardinal.

- $A, B \in [\kappa]^{\kappa}$ are said to be almost disjoint or a.d. if $|A \cap B| < \kappa$.
- A family 𝔄 ⊆ [κ]^κ is said to be almost disjoint or a.d. if the members of 𝔄 are pairwise a.d.
- Finally 𝔄 ⊆ [κ]^κ is called maximal almost disjoint or m.a.d. if 𝔄 is an a.d. family, |𝔄| ≥ κ, and 𝔄 cannot be extended to a larger a.d. family in [κ]^κ.

크

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Definition

Let $\kappa \geq \omega$ be a regular cardinal.

- $A, B \in [\kappa]^{\kappa}$ are said to be almost disjoint or a.d. if $|A \cap B| < \kappa$.
- A family 𝔄 ⊆ [κ]^κ is said to be almost disjoint or a.d. if the members of 𝔄 are pairwise a.d.
- Finally 𝔄 ⊆ [κ]^κ is called maximal almost disjoint or m.a.d. if 𝔄 is an a.d. family, |𝔄| ≥ κ, and 𝔄 cannot be extended to a larger a.d. family in [κ]^κ.

Definition

$$\mathfrak{a}(\kappa) = \min \{ |\mathscr{A}| : \mathscr{A} \subseteq [\kappa]^{\kappa} \text{ and } \mathscr{A} \text{ is m.a.d.} \}.$$

(日) (圖) (E) (E) (E)

Theorem (Rothberger)

For any regular $\kappa \geq \omega$, $\mathfrak{b}(\kappa) \leq \mathfrak{a}(\kappa)$.

Theorem (Shelah)

It is consistent to have $\aleph_1 = \mathfrak{b}(\omega) < \mathfrak{a}(\omega) = \aleph_2 = \mathfrak{s}(\omega)$. It is also consistent to have $\aleph_1 = \mathfrak{b}(\omega) = \mathfrak{a}(\omega) < \mathfrak{s}(\omega)$.

2

Theorem (Rothberger)

For any regular $\kappa \geq \omega$, $\mathfrak{b}(\kappa) \leq \mathfrak{a}(\kappa)$.

Theorem (Shelah)

It is consistent to have $\aleph_1 = \mathfrak{b}(\omega) < \mathfrak{a}(\omega) = \aleph_2 = \mathfrak{s}(\omega)$. It is also consistent to have $\aleph_1 = \mathfrak{b}(\omega) = \mathfrak{a}(\omega) < \mathfrak{s}(\omega)$.

• It turns out that ω is the *only regular* κ where $\mathfrak{b}(\kappa) = \kappa^+ < \kappa^{++} = \mathfrak{a}(\kappa)$ is consistent.

Theorem (R. + Shelah)

If $\kappa > \omega$ is regular, then $\mathfrak{b}(\kappa) = \kappa^+$ implies $\mathfrak{a}(\kappa) = \kappa^+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Theorem (Blass, Hyttinen, and Zhang)

Let $\kappa > \omega$ be regular. If $\mathfrak{d}(\kappa) = \kappa^+$, then $\mathfrak{a}(\kappa) = \kappa^+$.

크

イロト イヨト イヨト イヨト

Theorem (Blass, Hyttinen, and Zhang)

Let $\kappa > \omega$ be regular. If $\mathfrak{d}(\kappa) = \kappa^+$, then $\mathfrak{a}(\kappa) = \kappa^+$.

Question (Roitman)

Does $\mathfrak{d}(\omega) = \aleph_1$ imply that $\mathfrak{a}(\omega) = \aleph_1$?

Theorem (Shelah)

It is consistent to have
$$\aleph_2 = \mathfrak{d}(\omega) < \mathfrak{a}(\omega) = \aleph_3$$
.

- He actually gave two different proofs of $Con(\mathfrak{d}(\omega) < \mathfrak{a}(\omega))$.
- The first proof used ultrapowers and needed a measurable cardinal θ to produce a model with θ < ∂(ω) < a(ω).
- The other proof used templates and produced a model with $\mathfrak{d}(\omega) = \aleph_2.$

• Shelah's first proof also works for $\mathfrak{u}(\omega)$.

Theorem (Shelah)

Suppose there is a measurable cardinal θ . Then there is a c.c.c. forcing extension in which $\theta < \mathfrak{u}(\omega) < \mathfrak{a}(\omega)$.

• Shelah's first proof also works for $\mathfrak{u}(\omega)$.

Theorem (Shelah)

Suppose there is a measurable cardinal θ . Then there is a c.c.c. forcing extension in which $\theta < \mathfrak{u}(\omega) < \mathfrak{a}(\omega)$.

Theorem (Guzman and Kalajdzievski)

It is consistent relative to ZFC that $\aleph_1 = \mathfrak{u}(\omega) < \mathfrak{a}(\omega) = \aleph_2$ holds.

- Recall that Suzuki showed that if κ is not weakly compact, then $\mathfrak{s}(\kappa) < \kappa^+$.
- So should it be the case that if κ is not weakly compact, then r(κ) is "large"?

크

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- Recall that Suzuki showed that if κ is not weakly compact, then $\mathfrak{s}(\kappa) < \kappa^+$.
- So should it be the case that if κ is not weakly compact, then r(κ) is "large"?

Theorem (R. + Shelah [1])

Suppose that κ is supercompact. There is a forcing extension in which κ becomes the first Mahlo cardinal and $\mathfrak{r}(\kappa) = \kappa^+ < 2^{\kappa}$.

• If there are no inaccessibles above κ , then 2^{κ} can be made arbitrary here.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Definition

For an inaccessible cardinal θ define

 $SS_{\theta} = \{\mu < \theta : \mu \text{ is a singular strong limit}\}$

Definition

For an inaccessible θ , we define \mathbb{Q}_{θ}^{am} to be

 $\{p: \exists \alpha < \theta \mid p \text{ is an increasing continuous function from } \alpha \text{ to } SS_{\theta}]\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Define

$$\mathbb{Q}^{\mathrm{am}}_{<\kappa}=\prod\left\{\mathbb{Q}^{\mathrm{am}}_{ heta}: heta<\kappa ext{ is an inaccessible cardinal}
ight\},$$

where the product is taken with Easton support.

 By standard arguments, forcing with Q^{am}_{<κ} will make κ the least Mahlo cardinal.

크

< 日 > < 回 > < 回 > < 回 > < 回 > <

Definition

Define

$$\mathbb{Q}^{\mathrm{am}}_{<\kappa} = \prod \left\{ \mathbb{Q}^{\mathrm{am}}_{\theta} : \theta < \kappa \text{ is an inaccessible cardinal}
ight\},$$

where the product is taken with Easton support.

- By standard arguments, forcing with Q^{am}_{<κ} will make κ the least Mahlo cardinal.
- Now the idea is to assume κ is Laver indestructible, and first force to make r(κ) = κ⁺ < 2^κ by a < κ-directed closed forcing.
- Then do some preparatory forcings which maintain supercompactness.
- Finally forcing with Q^{am}_{<κ} will make κ the first Mahlo, and the preparatory forcings will have anticipated names, guaranteeing that r(κ) = κ⁺ still holds.

- Suppose κ is Laver indestructible, κ << μ = cf(μ) << λ = λ^{<λ} (λ below first inaccessible above κ).
- By the work of Garti and Shelah, and Dzamonja and Shelah, we can force a normal measure \mathcal{D} on κ and a base $\mathcal{A} \subseteq \mathcal{D}$ with $|\mathcal{A}| = \mu$.
- This is only for simplicity. We only need a pseudo-base for a normal measure on κ, which is much easier to achieve.

<ロ> <同> <同> <同> < 同> < 同> < 同> < 同>

We may assume that for each A ∈ A,
 A ⊆ {θ < κ : θ is strongly inaccessible}.

Definition

For $A \in A$, a sequence $\bar{p} = \langle p_{\theta} : \theta \in \text{nacc}(A) \rangle$ is said to be A-nice if the following hold:

1 each
$$p_{\theta} \in \mathbb{Q}^{\mathrm{am}}_{<\kappa}$$
;

2 $\theta \in \operatorname{dom}(p_{\theta})$ and there is a fixed $r_{\bar{p}}$ such that $p_{\theta}(\theta) = r_{\bar{p}}$, for all $\theta \in \operatorname{nacc}(A)$;

- **③** there is a fixed $q_{\bar{p}}$ so that $p_{\theta} \upharpoonright \theta = q_{\bar{p}}$, for all $\theta \in \text{nacc}(A)$;
- for each $\theta \in \operatorname{nacc}(A_m)$, $\operatorname{dom}(p_\theta) \subseteq \min(A_m \setminus \theta^+)$.

Note that if \bar{p} is A-nice, then dom $(\bar{p}) = nacc(A)$.

(日) (圖) (E) (E) (E)

Definition

Let X_A be the collection of all $m = \langle A_m, r_m, q_m \rangle$ such that

•
$$A_m \in \mathcal{A};$$

• $\exists \theta < \min(A_m) [r_m \in \mathbb{Q}_{\theta}^{\mathrm{am}}];$
• $\exists \theta < \min(A_m) [q_m \in (\mathbb{Q}_{<\kappa}^{\mathrm{am}}) \upharpoonright \theta].$
For each $m \in X_{\mathcal{A}}$ define

$$N_m = \{\bar{p} : \bar{p} \text{ is } A_m \text{-nice and } r_{\bar{p}} = r_m \text{ and } q_{\bar{p}} = q_m \}.$$

크

<ロ> <同> <同> < 同> < 同> < 同> <

Definition

Let X_A be the collection of all $m = \langle A_m, r_m, q_m \rangle$ such that

1
$$A_m \in \mathcal{A};$$

2 $\exists \theta < \min(A_m) \left[r_m \in \mathbb{Q}_{\theta}^{\mathrm{am}} \right];$
3 $\exists \theta < \min(A_m) \left[q_m \in (\mathbb{Q}_{<\kappa}^{\mathrm{am}}) \upharpoonright \theta \right].$
For each $m \in X_{\mathcal{A}}$ define

$$N_m = \{ \overline{p} : \overline{p} \text{ is } A_m \text{-nice and } r_{\overline{p}} = r_m \text{ and } q_{\overline{p}} = q_m \}$$
.

- Observe that X_A is not too large i.e. $|X_A| \le \mu$.
- If p
 is A-nice, then it determines a Q^{am}_{<κ}-name for a subset of A given by B
 <sub>p
 </sub> = {θ ∈ dom(p
) : p_θ ∈ G
 }.

2

< 日 > < 回 > < 回 > < 回 > < 回 > <

• Conversely, if \mathring{B} is a $\mathbb{Q}^{\mathrm{am}}_{<\kappa}$ -name for a subset of κ and $p \in \mathbb{Q}^{\mathrm{am}}_{<\kappa}$, then either $p \Vdash ``\mathring{B} \equiv 0 \mod \mathcal{D}"$ or for some $m \in X_{\mathcal{A}}$ and $\bar{p} \in N_m$, $q_m \leq p$ and

$$q_m \Vdash "\mathring{B}_{\overline{p}} \in [\kappa]^{\kappa} \text{ and } \mathring{B}_{\overline{p}} \subseteq \mathring{B}".$$

크

< 日 > < 回 > < 回 > < 回 > < 回 > <

• Conversely, if \mathring{B} is a $\mathbb{Q}^{\mathrm{am}}_{<\kappa}$ -name for a subset of κ and $p \in \mathbb{Q}^{\mathrm{am}}_{<\kappa}$, then either $p \Vdash ``\mathring{B} \equiv 0 \mod \mathcal{D}"$ or for some $m \in X_{\mathcal{A}}$ and $\bar{p} \in N_m$, $q_m \leq p$ and

$$q_m \Vdash "\mathring{B}_{\bar{p}} \in [\kappa]^{\kappa} \text{ and } \mathring{B}_{\bar{p}} \subseteq \mathring{B}".$$

Definition

For any $m \in X_{\mathcal{A}}$ define a poset \mathbb{R}_m for adding a generic element of N_m . $\mathbb{R}_m = N_m \times \kappa$. For $\langle \bar{p}_1, \gamma_1 \rangle, \langle \bar{p}_2, \gamma_2 \rangle \in \mathbb{R}_m, \langle \bar{p}_2, \gamma_2 \rangle \leq \langle \bar{p}_1, \gamma_1 \rangle$ iff $\qquad \gamma_2 \geq \gamma_1;$ $\qquad \bar{p}_1 \upharpoonright \gamma_1 = \bar{p}_2 \upharpoonright \gamma_1;$ $\qquad \forall \theta \in \operatorname{nacc}(A_m) [p_{2,\theta} \leq p_{1,\theta}].$ Define the \mathbb{R}_m -name $\mathring{\bar{p}}_m = \bigcup \{ \bar{p} \upharpoonright \gamma : \langle \bar{p}, \gamma \rangle \in \mathring{G} \}.$

Definition

Define

$$\mathbb{R}_{\mathcal{A}}=\prod\left\{\mathbb{R}_m:m\in X_A\right\},\$$

with $< \kappa$ supports.

Lemma

Suppose that *G* is $(\mathbf{V}, \mathbb{R}_{\mathcal{A}})$ -generic. For any \mathring{B} , if \mathring{B} is a $\mathbb{Q}_{<\kappa}^{am}$ -name for a subset of κ and $p \in \mathbb{Q}_{<\kappa}^{am}$, then the following holds in $\mathbf{V}[G]$:

Either $p \Vdash "\mathring{B} \equiv 0 \mod \mathcal{D}"$ or for some $m \in X_{\mathcal{A}}, q_m \leq p$, and $q_m \Vdash "\mathring{B}_{p_m[G]} \in [\kappa]^{\kappa}$ and $\mathring{B}_{p_m[G]} \subseteq \mathring{B}"$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Now we can do a < κ-support iteration ⟨ℙ_α; Ů_α : α ≤ μ⟩ satisfying the following:
 - $\bigcirc \mathbb{P}_{\mu} \text{ has cardinality } \lambda;$
 - 2 for each $\alpha < \mu$, \mathbb{P}_{α} preserves the supercompactness of κ ;

크

< 日 > < 回 > < 回 > < 回 > < 回 > <

- Now we can do a < κ-support iteration ⟨ℙ_α; Ů_α : α ≤ μ⟩ satisfying the following:
 - $\bigcirc \mathbb{P}_{\mu} \text{ has cardinality } \lambda;$
 - 2) for each $\alpha < \mu$, \mathbb{P}_{α} preserves the supercompactness of κ ;
 - **3** \mathbb{Q}_0 adds λ many Cohen subsets to κ ;
 - If or even α < μ, Q̂_α adds D̂_α and Å_α such that D̂_α is a name for a normal measure on P(κ) ∩ V^{P_α}, and Å_α is name for a base (or just a pseudo-base) for D̂_α having size μ;

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Now we can do a < κ-support iteration ⟨ℙ_α; Ů_α : α ≤ μ⟩ satisfying the following:
 - $\bigcirc \mathbb{P}_{\mu} \text{ has cardinality } \lambda;$
 - 2 for each $\alpha < \mu$, \mathbb{P}_{α} preserves the supercompactness of κ ;
 - **3** \mathbb{Q}_0 adds λ many Cohen subsets to κ ;
 - If or even α < μ, Q_α adds D_α and A_α such that D_α is a name for a normal measure on P(κ) ∩ V^{P_α}, and A_α is name for a base (or just a pseudo-base) for D_α having size μ;
 - So for even $\alpha < \mu$, $\mathring{\mathbb{Q}}_{\alpha+1}$ is a name for $\mathbb{R}_{\mathring{\mathcal{A}}_{\alpha}}$, adding a sequence $\langle \mathring{p}_{\alpha,m} : m \in X_{\mathring{\mathcal{A}}_{\alpha}} \rangle$;

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

- Now we can do a < κ-support iteration ⟨ℙ_α; Ů_α : α ≤ μ⟩ satisfying the following:
 - $\bigcirc \mathbb{P}_{\mu} \text{ has cardinality } \lambda;$
 - 2 for each $\alpha < \mu$, \mathbb{P}_{α} preserves the supercompactness of κ ;
 - 3 \mathbb{Q}_0 adds λ many Cohen subsets to κ ;
 - If or even α < μ, Q_α adds D_α and A_α such that D_α is a name for a normal measure on P(κ) ∩ V^{P_α}, and A_α is name for a base (or just a pseudo-base) for D_α having size μ;
 - $\begin{aligned} & \textbf{ or even } \alpha < \mu, \, \mathring{\mathbb{Q}}_{\alpha+1} \text{ is a name for } \mathbb{R}_{\mathring{\mathcal{A}}_{\alpha}} \text{, adding a sequence } \\ & \left\langle \ddot{\bar{p}}_{\alpha,m} : m \in X_{\mathring{\mathcal{A}}_{\alpha}} \right\rangle \text{;} \end{aligned}$
- finally in $\mathbf{V}^{\mathbb{P}_{\mu} \times \mathbb{Q}^{am}_{<\kappa}}$, we have $\mathfrak{r}(\kappa) \leq \mu$, $2^{\kappa} = \lambda$, and κ is the first Mahlo cardinal;

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• the witness for $\mathfrak{r}(\kappa)$ is just given by

$$\left\{ A \in [\kappa]^{\kappa} : \exists \alpha < \mu \left[\alpha \text{ is even and } A \in \mathring{\mathcal{A}}_{\alpha} \left[G_{\mathbb{P}_{\mu}} \right] \right] \right\} \cup \\ \left\{ \mathring{B}_{\overset{\circ}{p}_{\alpha,m} \left[G_{\mathbb{P}_{\mu}} \right]} \left[G_{\mathbb{Q}^{\operatorname{am}}_{<\kappa}} \right] : \alpha < \mu \text{ and } \alpha \text{ is even and } m \in X_{\mathring{\mathcal{A}}_{\alpha} \left[G_{\mathbb{P}_{\mu}} \right]} \right\}.$$

3

イロト イヨト イヨト イヨト

• the witness for $r(\kappa)$ is just given by

$$\begin{split} &\left\{A \in [\kappa]^{\kappa} : \exists \alpha < \mu \left[\alpha \text{ is even and } A \in \mathring{\mathcal{A}}_{\alpha} \left[G_{\mathbb{P}_{\mu}}\right]\right]\right\} \cup \\ &\left\{\mathring{B}_{\mathring{P}_{\alpha,m}\left[G_{\mathbb{P}_{\mu}}\right]}\left[G_{\mathbb{Q}_{<\kappa}^{am}}\right] : \alpha < \mu \text{ and } \alpha \text{ is even and } m \in X_{\mathring{\mathcal{A}}_{\alpha}\left[G_{\mathbb{P}_{\mu}}\right]}\right\}. \end{split}$$

- The conditions (1)–(5) are all easy to achieve except for (2).
- This is because the forcings \mathbb{R}_m do not satisfy Laver's condition.
- However we are only interested in preserving the supercompactness of κ by forcings of size at most λ, where the interval [κ, λ] has no strong inaccessibles.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• For this the following condition on a forcing \mathbb{P} suffices:

for every inaccessible $\theta < \kappa$, if $\mathcal{P} \subseteq \mathbb{P}$ is a $(< \theta)$ -directed set of cardinality less than the next inaccessible above θ , then (*) \mathcal{P} has a lower bound in \mathbb{P} .

• It is not hard to show that the forcings $\mathbb{R}_{\mathcal{A}}$ satisfy this condition.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Question

What is the consistency strength of the statement that κ is the first Mahlo cardinal and $\mathfrak{r}(\kappa) = \kappa^+ < 2^{\kappa}$?

Question

Is it possible to arrange $\mathfrak{r}(\kappa) = \kappa^+ < 2^{\kappa}$ at the first strongly inaccessible cardinal?

Question

Is is possible to arrange $\mathfrak{u}(\kappa) = \kappa^+ < 2^{\kappa}$ at the first weakly compact cardinal?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bibliography

D. Raghavan and S. Shelah, *The reaping number at the first mahlo cardinal*, Preprint.

Logic (to appear).

・ロ・ ・ 四・ ・ 回・ ・ 回・